
Hello, M.U.P.P.E.T.S.:  Using a 3D Collaborative Virtual 
Environment to Motivate Fundamental Object-Oriented 

Learning 
Christopher Egert 

Interactive Media Group 
Information Technology 

Department 
Rochester Institute of Technology 

102 Lomb Memorial Drive 
Rochester, NY 14623 

+1 585 475 4873 
cae@it.rit.edu 

Kevin Bierre 
Enterprise Computing Group 

Information Technology 
Department 

Rochester Institute of Technology 
102 Lomb Memorial Drive 

Rochester, NY 14623 
+1 585 475 5358 

kjb@it.rit.edu 

Andrew Phelps 
Interactive Media Group 
Information Technology 

Department 
Rochester Institute of Technology 

102 Lomb Memorial Drive 
Rochester, NY 14623 

+1 585 475 6758 
amp@it.rit.edu 

 

Phil Ventura 
Department of Natural Sciences, 

Math & Computer Science 
St. Thomas University 

16401 NW 37th Avenue 
Miami Gardens, FL 33054 

+1 305 628 6538 
pventura@stu.edu 

Abstract 
With the advent of the objects-first approach for introductory 
programming, instructors are challenged to think differently 
regarding the projects and exercises they create for their 
classrooms.  The objects-first approach reduces the emphasis on 
syntax and encourages the student to focus upon the proper 
construction and use of classes.  This change in emphasis means 
that students must understand the relationships between classes 
within a code solution and how such relationships affect the 
overall design of a system.  Unfortunately, such critical thinking 
exercises can prove challenging to the introductory student, 
especially if presented in an abstract manner. In this paper, the 
authors examine how fundamental principles such as inheritance, 
composition, and association can be conveyed to introductory 
programming students within a collaborative virtual environment.  
The examples chosen follow established guidelines for objects-
first examples while leveraging features of an engaging, three-
dimensional interactive environment.   

Categories and Subject Descriptors    K.3.2 [Computers and 
Education]: Computer and Information Science Education 

General Terms   Experimentation, Human Factors, Languages, 
Theory. 

Keywords    Programming Education, Virtual Worlds, Graphics. 

1. Introduction 
In recent years, Sun Microsystem’s Java programming language 
[10] has become the lingua franca within freshman programming 
courses [5].   The selection of Java has also prompted instructors 
to search for better techniques to promote object-oriented 
pedagogy within the classroom [1-3,8,11].  The momentum 
generated by object-oriented approaches has encouraged the 
ACM/IEEE Task Force for Computing Curriculum 2001 in 
Computer Science [1] to recommend an object-oriented 
introductory course sequence as a viable alternative to imperative 

approaches.   The object-oriented sequence places emphasis upon 
concepts such as objects and inheritance over traditional control 
structures such as conditionals and loops.  Some instructors 
embrace an even stronger definition of object-oriented pedagogy, 
which they refer to as “objects-first” [2,3,8].  The objects-first 
philosophy stresses exposure to concepts such as classes versus 
instances, methods versus properties, and class relationships such 
as composition, association, and inheritance within the first few 
weeks of the introductory course [2,3,11]. 

At present, there are some reports that objects-first approaches are 
working within the classroom [11].  However, these same 
practitioners recognize that there is more to an objects-first 
approach than just the introduction of abstract concepts such as 
classes and class relationships.  In order to ground abstract 
concepts, concrete examples must be provided that draw upon the 
background and experiences of the student.  In addition, examples 
must align with the student perception of computing, which has 
been influenced by video games and other multimedia, interactive 
experiences [7].  This paper examines the use of a collaborative 
virtual reality environment to motivate the exploration of early 
objects-first concepts such as differentiation between classes and 
objects, as well as critical concepts such as inheritance, 
composition, and association. 

2. The Graphical Design-Centric Objects-First 
Approach 
The graphical, design-centric, objects-first approach discussed 
within this paper was developed by one of the authors along with 
others at University at Buffalo, SUNY [2,3,11], and was inspired 
by the work started at Brown University [6].   The approach meets 
the criteria set forth by CC2001 for objects-first curricula and 
embraces the concept that object-oriented programming and 
design should be thematic in an object-oriented course.  While 
CC2001’s definition requires objects and inheritance to be 
covered prior to control structures, the graphical, design-centric 
objects-first course goes further.  As polymorphism plays as 
central role in object-oriented programming, it is likewise covered 
prior to selection and iteration.  In addition, design patterns are 
introduced just-in-time for solving design problems encountered. 

To foster both a vocabulary for design as well as an appreciation 
for the specification of a design independent of the programming 

 

 
 
 
 
Copyright is held by the author/owner(s). 
OOPSLA’06   October 22–26, 2006, Portland, Oregon, USA. 
ACM 1-59593-491-X/06/0010. 

881



language used, a simplified version of UML class diagrams is 
introduced. 

The starting point for an objects-first approach is the definition of 
a class.  A class is defined as a series of properties that reflect the 
state of an object and a series of capabilities that describe the 
appropriate actions for an object [11].  Using this definition, the 
objects-first approach stresses the differentiation between the 
class and the object.  The student learns that a class refers to the 
“blueprint” or description of the properties and capabilities of an 
object and the object itself represents a discrete instance of the 
class definition.  At this point, the instructor and student can 
engage in discussions that explore encapsulation as one of the 
three pillars of object-oriented programming. 

Once students are able to differentiate between classes and 
objects, the objects-first approach examines relationships between 
classes.  Students learn how to define and differentiate between 
composition (the has-a relationship) and association (the knows-a 
relationship) [2,3,11].  In composition, the construction of a single 
object invokes the construction of additional objects.  The 
combination of the original object along with the additional 
objects completely describes the “composite” object.  In 
association, a reference to one object is passed to another object 
during its construction.  Therefore, unlike composition, 
association is not responsible for the creation of the related object.   

After composition and association are covered, students learn 
about inheritance and polymorphism as key principles [2,3,11].  
When studying the concept of inheritance, students learn how to 
extend classes, adding specificity to generalized classes.  For 
polymorphism, students learn that for a generalized method 
invocation, a class can “do what it is supposed to do” by nature of 
the object-oriented paradigm. 

The primary concepts of the objects-first approach sometimes 
prove difficult for students to grasp.  To help provide structure, 
programming exercises are used to ground the concepts.  
Unfortunately, early attempts at text-based examples to motivate 
exploration of class relationships were not well received by 
students.  In examining our student base, it was clear that for 
students who define programming though video games and other 
media-rich experiences, the concept of text-based computing 
interactions would not prove compelling.  To counter this 
problem, two of the authors along with other faculty adapted 
objects-first materials from Brown University [6] in order to 
provide students with graphical introductory programming 
exercises.  Instead of text-based experiences, students created 
programs designed to illustrate principles of composition through 
image, interactivity and sound.  For composition, students created 
a breakfast table that had various breakfast items and an animated 
house that was decorated with a number of interactive 
knickknacks.  For association, students created graphical picture 
books in which association allowed for interactive control of 
image and sound.  Such exercises proved encouraging and 
successful in their own right [11].  However, the authors believe 
that a game-based three-dimensional collaborative virtual 
environment may prove to both more motivating and more 
accessible to students. 

3. A Virtual Environment for Exploring Objects-First 
Concepts 
At RIT, we have been working to create a collaborative virtual 
environment designed for the express purpose of teaching 
introductory programming. The Multi-User Programming 
Pedagogy for Enhancing Traditional Study (M.U.P.P.E.T.S.) [4,9] 
system directly challenges assumptions that the approach to 
learning programming must be theoretical and abstract.  Instead, 
the environment is designed to allow students to explore 
programming through experimentation and careful observation of 
cause and effect.  The M.U.P.P.E.T.S. environment speaks to 
students as it provides a framework in which students can create 
interactive 3D content in a game-like virtual world.  This provides 
for an introductory programming experience that is much more 
akin to programs the students have used themselves.  
Additionally, the system seeks to create a stronger bond between 
upper and lower division students by allowing them to co-inhabit 
our virtual space. 

 
Figure 1: A complex M.U.P.P.E.T.S. scene with several 

graphics effects. 
 

One of the goals of the M.U.P.P.E.T.S. environment is to provide 
the student with the ability to create and add content to the virtual 
space with ease.  Extending the MuppetsObject base class, which 
amounts to a few lines of code, does this for the student.  Students 
create a simple scene of primitives in their very first experience 
with the system.  These scenes, while rudimentary, still exhibit all 
of the graphical niceties found in modern commercial games: 
glow, reflection, refraction, shadows, fog, smoke, as well as other 
graphical effects.  An example is shown in Figure 1, in which the 
student is making use of several advanced effects such as glow 
and transparency.  The purpose here is not to add complexity, but 
rather to convince the first time programmer that they are working 
with a professional medium, which has been a criticism of 
systems that have tried this in the past.  Along that same vein, the 
programming language of M.U.P.P.E.T.S. is not a “toy” language 
– the system uses standard Java from Sun Microsystems, and all 
features of the language are available.  In order to achieve this, 
the system is architected as merely a layer over the underlying 
compiler.  Support for Microsoft’s C# programming language is 
now in development, through a similar mechanism. 

882



The M.U.P.P.E.T.S. system is divided into three major 
components: the virtual world, the command console, and the 
integrated development environment (IDE).  Each of these modes 
can be enabled from the others – there is no need to exit the world 
to test a possible solution to a code problem.  The virtual world is 
a standard gaming environment in which a user has an avatar of 
self-representation, and views the world from either a first- or 
third-person perspective.  Movement is accomplished through the 
‘mouse look and key move’ metaphor common to games of the 
current generation. 

The command console is a single pane from which new objects 
can be instantiated, and console variables set that control the 
various options available to the system (whether or not to use 
shadows, the view distance, or other features). 

The final mode available within the system is the IDE.  The IDE 
specifically contains features that students felt were critical to a 
professional programming environment: line numbering, color-
coded syntax highlighting, context-sensitive auto-complete, as 
well as other features associated with available IDE 
implementations.  The IDE layers over the existing world when 
desired.  Anecdotal student feedback has consistently pointed out 
that the ability to code, compile, create, destroy and re-code 
without leaving the world has been a very desirable feature of the 
system. 

4. Motivating Fundamental Object-Oriented Concepts 
In this section, we demonstrate how M.U.P.P.E.T.S. can be used 
to motivate critical concepts in object-oriented design and 
implementation, including differentiation of class and object, 
inheritance, composition, and association. 

4.1 Class vs. Object and a First Look at Inheritance 
When students are initially introduced to M.U.P.P.E.T.S., one of 
the first things they wish to do is to create a simple object within 
the virtual world.  To demonstrate how this is done, the 
instructors present a program, which creates a simple object with 
the least lines of M.U.P.P.E.T.S. code.  In M.U.P.P.E.T.S., the 
simplest code allows for the construction of a primitive shape.   
 

// ETCube.java 
 
import muppets.core.*; 
 
public class ETCube extends MuppetsObject { 
 
   public ETCube() {  
      super(); 
      this.setPrimitive(CUBE); 
   } 
} 

Figure 2: ETCube – A simple M.U.P.P.E.T.S. class 
 
As seen in Figure 2, the ETCube class has many of the key 
features one would expect in an object-oriented class definition.  
First, the class definition allows for the discussion of import 
statements, comments, constructors, and method invocation.  
However, more importantly, it provides the student with his or her 
first exposure to the concept of inheritance.  Even in the simplest 
M.U.P.P.E.T.S. program, all entities within the world must extend 
the functionality of the MuppetsObject class.  This immediately 
allows the instructor to challenge students to ponder the concept 

of inheritance and leads to discussion regarding traversing the 
hierarchy for method invocation as well as the use of the keyword 
super in code.  The example also allows students to experiment 
with keywords such as this. 
 

 
Figure 3: Creating an Instance of an ETCube 

 
Once a student successfully creates and compiles the ETCube 
code file, he or she can use the ETCube definition within the 
M.U.P.P.E.T.S. world.  As shown in Figure 3, students can create 
new instances of the ETCube wherever they wish, merely by 
navigating to a new location (using the yellow spherical avatar) in 
the virtual world, invoking the console, and typing new ETCube.  
Students can determine if their creations work satisfactory within 
a local “sandbox” area, and when they are satisfied with their 
creations, they can present their results to their instructor or peers. 
In many ways, the ETCube example is similar to the ever-familiar 
HelloWorld example in that it represents the minimum 
functionality necessary to create a functional program in the 
representative language.  However, unlike HelloWorld, it 
promotes strong object-oriented practices from the first exposure 
with the language.  Furthermore, the ETCube example combined 
with the M.U.P.P.E.T.S. environment provides visual, interactive 
feedback to the student. 

4.2 A Deeper Look at Inheritance 
As students explore object-oriented issues, they begin to learn that 
not only can they extend built-in objects such as MuppetsObject, 
but also that they can use inheritance to make their own creations 
more powerful. 
// ETColorBox.java 
 
import muppets.core.*; 
 
public class ETColorBox extends MuppetsObject { 
  
   private static final float SIZE_LENGTH = 7.0f; 
   private static final float SIZE_WIDTH = 4.0f; 
   private static final float SIZE_HEIGHT = 3.0f; 
   private static final float COLOR_R = 1.0f; 
   private static final float COLOR_G = 0.0f; 
   private static final float COLOR_B = 0.0f; 
  
   public ETColorBox() {  
      super(); 
      this.setPrimitive(CUBE); 
      this.setScale(SIZE_LENGTH,SIZE_WIDTH,  
                    SIZE_HEIGHT); 
      this.setColor(COLOR_R, COLOR_G, COLOR_B); 
   } 
} 

Figure 4: The ETColorBox class 

883



To demonstrate, students start out with a rather simple class of 
their own construction, such as ETColorBox in Figure 4.  This 
class creates a box, consisting of a fixed size and a fixed color, in 
this case, red.  In classroom discussion, students are challenged by 
the instructor to think about how additional functionality, such as 
animation, could be added to the class.   There are, of course, 
many different thoughts regarding how this can be accomplished.  
Some students suggest that the animation code should be added 
directly to the existing class.  The opposing view argues that the 
original functionality of the class should remain intact, just in 
case we need to use ETColorBox in its original context. 
 

// ETRotateBox.java 
 
import muppets.core.*; 
 
public class ETRotateBox extends ETColorBox { 
 
   private static final float RECT_ROTATE = 1.0f; 
  
   public ETRotateBox() {  
      super(); 
   } 
 
   public void update(float aDeltaTime) { 
     super.update(aDeltaTime); 
     this.rotate(RECT_ROTATE,1.0f,0.0f,0.0f); 
   } 
} 

Figure 5: ETRotateBox extends the ETColorBox class 
 

Eventually, this discussion proves to be a catalyst for the 
discussion of inheritance within one’s own work.  Using a UML 
class diagram, design of the ETRotateBox class is discussed, 
which inherits functionality from ETColorBox.  From this design, 
students proceed to an implementation of the ETRotateBox class, 
similar to the solution depicted in Figure 5. Within the 
M.U.P.P.E.T.S. environment, students can create both instances 
of ETColorBox as well as ETRotateBox in order to observe the 
differences between the original class and the extended class. 

4.3 Composition 
The next step for students is to understand the concept of 
composition.  Composition provides for the has-a relationship and 
implies that the constructor of a primary object has the 
responsibility for creating instances of sub-objects that comprise 
the composite object. 
One method that is used for demonstrating composition to 
students is the creation of a face in the M.U.P.P.E.T.S. 
environment.  The in-class conversation starts with students 
discussing the components that comprise a face.  Immediately, 
students mention critical components such as eyes, noses, mouths, 
ears, and other features.  However, upon closer inspection, 
students realize that many of the components themselves are 
constructed of smaller parts.  For example, the eyes can be 
thought of as consisting of the sclera, iris, and pupil.  The 
instructor uses the various levels of detail to start the design 
process. 
To begin, the instructor starts to discuss the design of an eye.  The 
students work together to design the UML class diagram that 
represents the eye, as seen in Figure 6.   

Figure 6: ETEyeBall UML class diagram 
 

The principle of composition is discussed in relationship to the 
class diagram.  From here, students start working on the 
individual components of the eye.  If they work in groups, each 
student codes one part of the eye.  For example, Figure 7 
illustrates the code needed to create the Sclera. 
 
// ETSclera.java 
 
import muppets.core.*; 
 
public class ETSclera extends MuppetsObject { 
 
   private static final float SCLERA_CR = 0.95f; 
   private static final float SCLERA_CG = 0.95f; 
   private static final float SCLERA_CB = 0.95f; 
   private static final float SCLERA_SIZE = 0.5f; 
     
   public ETSclera() { 
      super(); 
      this.setPrimitive(SPHERE); 
      this.setScale(SCLERA_SIZE, SCLERA_SIZE, 

 SCLERA_SIZE); 
      this.setColor(SCLERA_CR, SCLERA_CG, 

 SCLERA_CB);  
   } 
} 

Figure 7: ETSclera Code 
 
Once students complete their individual eye parts, the code that 
performs composition is created.  Figure 8 illustrates this code.  
From here, students can create floating eyeballs within their world 
as a means of determining that composition worked! 

Once students understand the construction of a single eyeball 
using composition, they use the same principle to build the entire 
face.   As part of the continued exercise, they learn about code 
reuse (since they use the eyeball they created earlier) and they 
receive additional reinforcement regarding the composition 
process. 

 
 

884



// ETEyeBall class 
 
import muppets.core.*; 
 
public class ETEyeBall extends MuppetsObject { 
 
   private ETSclera _sclera; 
   private ETIris   _iris; 
   private ETPupil  _pupil; 
  
   public ETEyeBall() {    
      super(); 
      this.setPrimitive(NODRAW); 
 
      _sclera = new ETSclera(); 
      this.addChild(_sclera);  
      
      _iris = new ETIris(); 
      _iris.move(0.0f, 0.0f, 0.051f, true); 
      this.addChild(_iris); 
      
      _pupil = new ETPupil(); 
      _pupil.move(0.0f, 0.0f, 0.075f, true); 
      this.addChild(_pupil); 
   } 
} 

Figure 8: ETEyeBall Code 
 

Students are encouraged to customize their faces so that each 
student’s work is different.  Figure 9 demonstrates a completed 
face within the M.U.P.P.E.T.S. environment. 
 

 
Figure 9: Instance of an ETFace object in the M.U.P.P.E.T.S. 

world 

4.4 Association 
Once students build faces using composition, the concept of 
association is explored through the construction of a trigger that 
affects a change upon the face.  In this case, an animated cube 
within the M.U.P.P.E.T.S. world acts as a trigger to change the 
face from yellow to blue.  As seen in Figure 10, the instance of 
the face is passed to the trigger constructor such that a knows-a 
relationship can be established.  When the student constructs the 
scene, he or she can navigate the avatar to the trigger point and 
activate the trigger to affect the change.  The students are 
challenged to discuss why the relationship between the face and 
the trigger is best expressed with association rather than 
composition. 
 

// ETScene.java 
 
import muppets.core.*; 
 
public class ETScene extends MuppetsObject { 
 
   private ETFace     _face; 
   private ETTrigger  _trigger; 
  
   public ETScene() {    
      super(); 
      this.setPrimitive(NODRAW); 
       
      _face = new ETFace(); 
      this.addChild(_face);  
      
      _trigger = new ETTrigger(_face); 
      this.birth(_trigger); 
   } 
} 

Figure 10: Example of association within ETScene 

5. Future Work 
It is the intent of the authors to continue to explore ways of 
creating objects-first programming exercises that are appropriate 
for demonstration and student critical thinking within 
collaborative virtual environments. The authors plan to test their 
approach multi-institutionally and to analyze the effect of using 
such assignments upon learning and comprehension within the 
introductory course. 

6. Acknowledgements 
The authors would like to thank RIT’s Provost’s Learning 
Initiatives Grants program, the RIT Information Technology 
Department, and Sun Microsystems for providing initial funding 
and support for the M.U.P.P.E.T.S. project.  Furthermore, the 
authors wish to acknowledge Microsoft Research, and the MSR 
External Research and Programs Group for continued research 
funding of the M.U.P.P.E.T.S. project.  The authors would also 
like to thank all past and present students who have contributed to 
the M.U.P.P.E.T.S. project 

7. Further Information 
Additional information regarding the M.U.P.P.E.T.S. project can 
be found at http://muppets.rit.edu. 

8. References 
[1]   ACM/IEEE Joint Task Force on Computing Curricula.  

Computing Curricula 2001: Computer Science, December, 
2001 

[2]   Alphonce, C. and Ventura, P. Object Orientation in CS1-CS2 
by Design, In Proc. of the 7th Annual ITiCSE Conference, 
Aarhus, Denmark, 2002,70-74 

[3]   Alphonce C. and Ventura, P. Using Graphics to Support 
Teaching of Fundamental Object Oriented Principles, In 
OOPSLA 2003 Educator’s Consortium Companion, 2003, 
156-161 

[4]   Bierre, K. and Phelps, A. The Use of M.U.P.P.E.T.S. in an 
Introductory Java Programming Course, In Proc. of the 5th 
Annual SIGITE Conference, 2004, 122-127. 

[5]   de Raadt, M., Watson, R., and Toleman, M. Introductory 
Programming: What’s Happening Today and Will There Be 

885



Any Students to Teach Tomorrow?, Proc. of the 6th ACE 
Conference, Dunedin, New Zealand, 2004, 277-282 

[6]   Duvall, R., Chotin, M., Neuringer, M., Goldberg, D., and d 
van Dam, A.. Object-Oriented Programming Chapters 
(draft): Online: 
http://www.cs.brown.edu/courses/cs015/2001/Chapters/conte
nts.html 

[7]   Guzdial, M. and Soloway, E. Log on Education: Teaching 
the Nintendo Generation how to Program, Communications 
of the ACM, 45(4), 2002 

[8]   Kölling, M. and Rosenberg, J. Guidelines for Teaching 
Object Orientation with Java,  In Proc. of the 6th Annual 
ITiCSE Conference, Canterbury, UK, 2001, 33-36 

[9]   Phelps, A., Bierre, K., and Parks, D. M.U.P.P.E.T.S: Multi-
user Programming Pedagogy for Enhancing Traditional 
Study, In Proc. of the 4th CITC Conference, 2003, 100-105 

[10] Sun Microsystems. Java Technology Home Page: Online: 
http://www.javasoft.com 

[11] Ventura, P. On the Origins of Programmers: Identifying 
Predictors of Success for an Objects First CS1. Ph.D. Thesis, 
University at Buffalo, Buffalo, NY, 2003. 

 
 

886


